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Component Description 
 

DNA methylation (DNAm) is one type of potentially reversible epigenetic modification, 
characterized by the addition of a methyl group to a cytosine DNA base without changing the 
DNA sequence.1 DNAm is prevalent in gene promoter regions and may influence gene 
expression. In certain cases, DNAm is also mitotically heritable, allowing for the maintenance of 
cell-specific gene expression throughout an organism’s lifetime.2 An important use of DNAm 
data is in the production of epigenetic biomarkers,3 which are associated with various health 
outcomes and mortality.4–8 

DNAm was measured from biospecimens collected from NHANES participants during 
the 1999-2000 and 2001-2002 cycles. DNAm was measured using Illumina EPIC BeadChip 
arrays. Methylation data matrices were produced, pre-processed, and normalized. DNAm 
derived epigenetic biomarkers predicting chronological age, phenotypic age, telomere length, 
pace of aging, mortality, and mitotic cell turnover rate were produced.  

This documentation contains information for the NHANES DNAm array derived data for 
1999-2000 and 2001-2002. It describes the samples, laboratory methods, and bioinformatics 
procedures used to produce the final DNAm data files. 

 
Eligible Samples 
 

A selection of adults aged 50 years and over surveyed in 1999-2000 or 2001-2002 who 
had blood collected for DNA purification were eligible. The sample includes a random selection 
of approximately one half of eligible non-Hispanic White participants and all eligible non-
Hispanic Black, Mexican American, other Hispanic, and other race participants. 

 
Description of Laboratory Methodology 
 

DNA was extracted from whole blood, and specimens were stored at -80°C. The DNAm 
assay was performed in the laboratory of Dr. Yongmei Liu at Duke University. Bisulfite 
conversion of DNA was carried out using manufacturer’s recommendations. 500ng of DNA was 
bisulfite treated using a Zymo EZ DNA Methylation kit (cat# D5001, Zymo Research, Irvine, 
CA, USA) using PCR conditions for Illumina’s Infinium Methylation assay (95°C for 30 
seconds, 50°C for 60 minutes x16 cycles). Data were produced on the Illumina Infinium 
MethylationEPIC BeadChip v1.0 (cat# WG317-1001, Illumina, San Diego, CA, USA). A total of 
4 µL of bisulfite converted DNA was hybridized to the Illumina BeadChip using manufacturer 
protocols. The samples were denatured and amplified overnight for 20-24 hours. Fragmentation, 
precipitation, and resuspension of the samples followed overnight incubation, prior to 
hybridization to the EPIC BeadChip for 16-24 hours. The BeadChip was then washed to remove 
any unhybridized DNA and labelled with nucleotides to extend the primers to the DNA. 
Following the Infinium HD Methylation protocol, the BeadChip was imaged using the Illumina 
iScan system (Illumina, San Diego, CA, USA).   

 
Bioinformatics Procedures 
 

The following section briefly describes the pre-processing and normalization steps to 

https://support.illumina.com/downloads/infinium-methylationepic-v1-0-product-files.html
https://support.illumina.com/downloads/infinium-methylationepic-v1-0-product-files.html
https://support.illumina.com/downloads/infinium-methylationepic-v1-0-product-files.html
https://support.illumina.com/downloads/infinium-methylationepic-v1-0-product-files.html
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produce the DNAm epigenetic biomarkers from the Illumina EPIC BeadChip array IDAT files. 
All pre-processing and DNAm epigenetic biomarker production were completed in the RStudio 
environment9 [version 2023.03.01 build 446] using the R language10 [version 4.3.1]. Specific 
code used to produce these data files can be found in Appendix 1 & Appendix 2. 

 
1. IDAT file pre-processing into methylated and unmethylated files 

The output of the Illumina EPIC BeadChip arrays were IDAT files, which are images of 
the chip scans in a green and red fluorescent channel. DMAP files provided by Illumina denoted 
the genomic location of the specific signals accompanying the IDATs. For initial pre-processing, 
these files were used to transform the red and green intensity signals into the methylated and 
unmethylated signals. 

 
2. Color correction and background subtraction 

The Illumina EPIC BeadChip arrays contained a set of control probes designed to 
determine system background levels, probe specificity, and bisulfite conversion, staining, 
extension, hybridization, and target removal efficiency. These probes were used to calculate and 
then subtract background levels. Additionally, to account for intensity variation between the two- 
color channels used, color correction was performed by normalizing across color channels. 

 
3. Epigenetic biomarker production 

a. Sample outlier detection and removal 
Outlier samples were removed if the median intensity values of both the methylated and 
unmethylated channels were <10.5. 

b. Imputation 
We assessed the percentage of probes within each epigenetic biomarker that was missing 
in more than 5% of samples. Imputation was done in two different ways according to the 
DNAm epigenetic biomarker creators. For the Horvath11, Hannum12, SkinBlood13, 
GrimAge14, GrimAge215, and PhenoAge16 biomarkers, a gold standard reference data set 
produced by Horvath was used where the mean DNAm beta values were imputed for 
missing data values of each DNAm site. For the telomere17, Yang18, Zhang19, Lin20, 
Weidner21, VidalBralo22, and DunedinPoAM23 biomarkers, the NHANES dataset was 
used to calculate mean CpG measures to impute missing values. 

c. Normalization 
The Illumina EPIC BeadChip array utilized a two-probe design tailored to measure 
methylation in low and high density CpG regions resulting in a probe type bias, which 
was normalized using the beta mixture quantile (BMIQ) method24 which fit a 3-state beta 
mixture model, transformed the state-membership of type 2 probes to fit quantiles of type 
1, and transformed hemi-methylated probes conformally. Original BMIQ methods24 were 
used for most epigenetic biomarkers. For the Horvath17, Hannum12, SkinBlood13, 
GrimAge14, GrimAge215, and PhenoAge16 biomarkers, a modified BMIQ version was 
used where instead of normalizing type 2 probes against type 1 probes, it was done 
against a gold standard produced by Horvath as per the epigenetic biomarkers’ creators’ 
methods. 

d. DNAm epigenetic biomarker predictions 
The coefficients provided by the authors of each epigenetic biomarker (Horvath17, 
Hannum12, SkinBlood13, PhenoAge16, telomere17, Yang18, Zhang19, Lin20, Weidner21, 
VidalBralo22, DunedinPoAM23, GrimAge14, and GrimAge215) were applied to the 
corresponding subset of probes to produce a score for each participant. 
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e. Cell type proportion prediction 
As NHANES samples were sourced from blood, a heterogenous tissue, DNAm was used 
to predict cell type proportion for pre-processing and analysis purposes using a regression 
calibration algorithm25. Specifically, the IDOL probe subset was used in combination with 
the FlowSorted.Blood.EPIC_ref reference dataset on the NHANES data to predict cell 
type proportions using the “estimateCellCounts2” function from the 
immunomethylomics/FlowSorted.Blood.EPIC package26–28. A proportional estimate of six 
cell types (neutrophils, monocytes, B-lymphocytes, natural killer cells, CD4+, and CD8+ 
T-cells) was produced for each participant. 

f. Sample mismatch identification and removal 
Three analyses were performed to identify any sample mismatches: 1) samples with more than 
two standard deviations of discrepancy between chronological age and DNAm predicted age, 
2) samples with more than two standard deviations of discrepancy between lab measured cell 
type proportion and DNAm predicted cell type proportion measures, and 3) samples with 
unexpected XY chromosomal ploidy based on mean differences of raw DNAm measures. 
Samples mismatched based on all three criteria were removed. 

 
4. EWAS beta matrix production 

a. Normalization 
Functional normalization29 was applied to the beta matrix. This method utilized the 
control probes present on the array designed to account for technical variation 
encountered with these data.  

b. Removing outlier samples 
Outlier samples were determined by utilizing several different methods and then 
removing those detected by more than one method. The methods were: 

i. Lumi30: Outliers were determined when the measures within a sample’s distance 
to the center was larger than two median distances to the center of all other 
samples. 

ii. WateRmelon pcout31: Samples with significant weight, distance, and scatter 
from all samples, as determined by robust principal components methods, were 
determined as outliers. 

iii. locFDR12: Samples with an FDR<0.2 standardized based on the squared 
distance of the first PC from the population mean using principal component 
analysis were labelled as outliers. This process was done iteratively until no 
further outliers were detected. 

c. Removing outlier probes 
Probes with a performance p-value >1x10-16 were considered outliers and were 
removed32. 

d. Probe filtering 
Control probes that do not have a strong signal above background and bind multiple sites 
within the genome were removed prior to analysis: 

i. SNP probes: 59 single nucleotide polymorphism (SNP) probes designed to 
uniquely identify an individual on the EPIC array were used to confirm technical 
replicates from the same samples.  

ii. Poorly performing probes: Probes which could not be measured in ≥ 1% of 
samples were removed. 

iii. XY chromosome probes: Due to the uneven distribution of X and Y 
chromosomes among the population, probes designed to measure sites located in 
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these chromosomes were normalized and preprocessed separately.  
iv. Polymorphic probes: Probes containing SNPs either at the CpG site being 

measured or at the site of the single base pair extension which has a minor allele 
frequency (MAF) greater than or equal to 1% were removed. Additionally, 
DNAm site measurements predicted to be impacted by proximal SNPs by Pidsley 
et. al.,31 and Price et. al.,33 were also removed. 

v. Cross-hybridizing probes: Probes predicted in silico to bind elsewhere in the 
genome than intended were identified as cross-hybridizing probes to aid in future 
analysis33,34.  

e. Technical variation correction 
ComBat35 was applied to remove residual variation attributed to technical sources of 
variation including plate, chip, and row number using both parametric and non-
parametric methods. 

 
Analytic Notes 
 

The DNAm data files can be linked to the other NHANES 1999-2000 and 2001-2002 
data files using the participant identifier (SEQN). The data dictionary for the DNAm files can be 
found in Table 1.  

Special sample weights are required to analyze these data properly. Specific sample 
weights for this subsample, WTDN4YR, are included in these data files and should be used 
when analyzing these data. The sample weights created for this file used the examination sample 
weight, i.e., WTMEC4YR, as the base weight. The base weight was adjusted for additional 
nonresponse to these array tests and re-poststratified to the population total using sex, age, and 
race/Hispanic origin. Participants who were part of the eligible population but who did not 
provide a blood specimen for DNA, did not have sufficient volume of DNA specimens, or did 
not give consent for their specimens to be used for future research are included in the file, but 
they have a sample weight assigned “0” in their records. For additional information on weighted 
analyses refer to the NHANES analytic guidelines. 

 
Flow Chart – Sample to Data Files 
 

https://wwwn.cdc.gov/nchs/nhanes/continuousnhanes/default.aspx?BeginYear=1999
https://wwwn.cdc.gov/nchs/nhanes/continuousnhanes/default.aspx?BeginYear=2001
https://wwwn.cdc.gov/nchs/nhanes/analyticguidelines.aspx#estimation-and-weighting-procedures
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Data Files  
 

 
Variable List 

File Name Description Data File Mode of 
Access 

DNAm Epigenetic 
Biomarker 

DNAm derived epigenetic biomarkers 
predicting chronological age, phenotypic age, 
telomere length, pace of aging, mortality, and 
mitotic cell turnover rate 

dnmepi.sas7bdat Public 

Normalized and Pre-
processed DNAm 

Normalized beta values where the rows are 
CpG sites and the columns are sample names 
with values ranging from 0 to 1.  

DNAm-CpG-Sites.csv Restricted 

Table 1. DNAm Epigenetic biomarker variable list 

Variable Label 

HorvathAge11 Horvath DNA methylation predicted chronological age in 51 tissues. 

HannumAge12 Hannum DNA methylation predicted chronological age in whole blood. 

SkinBloodAge13 Horvath DNA methylation predicted chronological age in skin and blood derived tissues. 

PhenoAge16 Levine DNA methylation predicted phenotypic age in whole blood. 

LinAge20 Lin DNA methylation predicted chronological age in whole blood. 

WeidnerAge21 Weidner DNA methylation predicted chronological age in whole blood. 

VidalBraloAge22 Vidal-Bralo DNA methylation predicted chronological age in whole blood. 

YangCell18 Yang DNA methylation predicted mitotic cell division in whole blood. 

ZhangAge19 Zhang DNA methylation predicted chronological age in whole blood and saliva. 

GrimAgeMort14 Horvath DNA methylation predicted mortality in whole blood. 

GrimAge2Mort15 Horvath updated DNA methylation predicted mortality in whole blood. 

DunedinPoAm23 Belsky DNA methylation predicted pace of aging in whole blood. 

HorvathTelo17 Horvath DNA methylation predicted telomere length in leukocytes. 

ADMMort14 DNA methylation predicted adrenomedullin used to predict time of death for GrimAge and 
GrimAge2. 

B2MMort14 DNA methylation predicted beta-2 microglobulin used to predict time of death for GrimAge 
and GrimAge2. 

CystatinCMort14 DNA methylation predicted cystatin C used to predict time of death for GrimAge and 
GrimAge2. 
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GDF15Mort14 DNA methylation predicted Beta-2 growth differentiation factor 15 used to predict time of 
death for GrimAge and GrimAge2. 

LeptinMort14 DNA methylation predicted leptin used to predict time of death for GrimAge and GrimAge2. 

logA1CMort15 DNA methylation predicted hemoglobin A1c used to predict time of death for GrimAge2. 

CRPMort15 DNA methylation predicted high sensitivity C-reactive protein used to predict time of death for 
GrimAge2. 

PACKYRSMort14 DNA methylation predicted pack years of smoking used to predict time of death for GrimAge 
and GrimAge2. 

PAI1Mort14 DNA methylation predicted plasminogen activation inhibitor used to predict time of death for 
GrimAge and GrimAge2. 

TIMP1Mort14 DNA methylation predicted tissue inhibitor metalloproteinase 1 used to predict time of death 
for GrimAge and GrimAge2. 

XY_Estimation DNA methylation predicted sex chromosomes (1 = XX, 2 = XY). 

CD8TPP26–28 DNA methylation predicted CD8+ T-cell proportion in blood sample. 

CD4TPP26–28 DNA methylation predicted CD4+ T-cell proportion in blood sample. 

NKcell26–28 DNA methylation predicted natural killer cell proportion in blood sample. 

Bcell26–28 DNA methylation predicted B-cell proportion in blood sample. 

MonoPP26–28  DNA methylation predicted monocyte proportion in blood sample. 

NeuPP26–28 DNA methylation predicted neutrophil proportion in blood sample. 



 

9 

Appendix 1: Code for NHANES 1999-2000 and 2001-2002 DNA methylation 
array pre-processing and normalization 

 
1 Libraries 

library("minfi") 
library("BiocGenerics")  
library("Biobase")  
library("scales")  
library("reshape2")  
library("crayon")  
library("withr")  
library("ggplot2")  
library("matrixStats") 
library("FDb.InfiniumMethylation.hg19") 
library("foreach")  
library("iterators")  
library("locfit")  
library("bumphunter")  
library("methylumi")  
library("gplots")  
library("limma")  
library("marray")  
library("lumi") 
library("wateRmelon") 
library("plyr") 
library("sva") 
library("IlluminaHumanMethylationEPICanno.ilm10b2.hg19") 
library("IlluminaHumanMethylationEPICanno.ilm10b4.hg19") 
library("IlluminaHumanMethylationEPICmanifest")  
library("RPMM") 
library("WGCNA")  
library("impute")  
library("FlowSorted.Blood.EPIC") library("reticulate")  
library("Metrics")  
library("vroom") 
library("dbplyr")  
library("locfdr")  
library("magrittr")  
library("dendextend")  
library("quantro")  

 

2 Creating MethyLumiSet Object 
Code for reading in iDats to create a MethyLumiSet object.  
 
path <- "~/NHANES_idats" 
sampleInfo <- read.csv("~/NHANES_Samplesheet.csv", header = T, row.names = 1, skip = 7) 
sampleInfo$Basename <- paste(sampleInfo$Sentrix_ID, sampleInfo$Sentrix_Position, sep="_") 
sampleInfo$Chip_Position <- sampleInfo$Basename 
sampleInfo$Basename <- file.path(path, sampleInfo$Basename) 
NHANES_MS <- readEPIC(barcodes = sampleInfo$Chip_Position, pdat = sampleInfo, n = T, oob = T, 
idatPath = path) 
sampleNames(NHANES_MS) <- sampleInfo$Sample_Group  
save(NHANES_MS, file = "~/NHANES_MS.RData") 
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3 Quality Control Check 
Code for analyzing the control probes to see how the array performed and to see if there are any outlier 
samples present. 
load("~/NHANES_qcraw.RData") # This was produced from NHANES_DNAm_Biomarker_Code 
outliers <- NHANES_qcraw$Sample_ID[NHANES_qcraw$Threshold <= 10.5] 

 

4 Normalization - Funnorm 
Function implementing functional normalization pre-processing for Illumina methylation microarrays34.  

4.1 FunNorm PCA 
Determining how many principal components (PC) to include in the Funnorm function, which is defined 
as the number of PCs which accounts for at least 90% of the variance: 
load("~/NHANES_RG_Raw.RData") # This was produced from NHANES_DNAm_Biomarker_Code 
source("~/PCA_forFunNorm.R") 
controlPCA <- PCA_forFunNorm(NHANES_RG_Raw) 
ctrlPCASum <- summary(controlPCA)$importance 
colnames(ctrlPCASum)[ctrlPCASum[3,] >= 0.9][[1]] #  

 

4.2 FunNorm Application 
Applying the normalization method and replacing the beta matrix into the methylumi set object: 
NHANES_RG_FN <- preprocessFunnorm(NHANES_RG_Raw, nPCs = 3) 
save(NHANES_RG_FN, file = "~/NHANES_RG_FN.RData") 
NHANES_MS <- NHANES_MS[featureNames(NHANES_MS) %in% rownames(getBeta(NHANES_RG_FN))] 
NHANES_RG_FN <- NHANES_RG_FN[featureNames(NHANES_RG_FN) %in% rownames(betas(NHANES_MS))]  
NHANES_RG_betas <- getBeta(NHANES_RG_FN) 
NHANES_MS_betas <- betas(NHANES_MS)  
NHANES_RG_betas <- NHANES_RG_betas[order(match(rownames(NHANES_RG_betas), 
rownames(NHANES_MS_betas))),]  
betas(NHANES_MS) <- NHANES_RG_betas 
save(NHANES_MS, file = "~/NHANES_MS.RData") 

 

5 Adding EPIC Platform Annotation 
Adding additional EPIC annotation.  
 
load("~/EPIC_Annotation_Complete.RData") probe_names <- 
rownames(NHANES_MS) 
EPIC_Ann <- EPIC_Annotation_Complete[EPIC_Annotation_Complete$Name %in% probe_names,] 
probe_names_2 <- rownames(EPIC_Ann) 
NHANES_MS <- NHANES_MS[featureNames(NHANES_MS) %in% probe_names_2,]  
EPIC_Ann <- EPIC_Ann[match(rownames(NHANES_MS), rownames(EPIC_Ann)),]  
fData(NHANES_MS) <- EPIC_Ann 
save(NHANES_MS, file = "NHANES_MS.RData") 

 

6 Detecting Outlier Samples 
6.1 Detect Outlier in Lumi 

The outlier detection was based on the distance from the sample to the center (average of all 
samples). The assumption of the outlier detection is that there is only one single cluster and the 
distance from the sample to the center is Gaussian distributed30. An outlier is detected when its 
distance to the center is larger than a certain threshold. The threshold is calculated as Th * median 
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distances to the center. 
NHANES_detout <- detectOutlier(betas(NHANES_MS))  
save(NHANES_detout, file = "~/NHANES_detout.RData") 

6.2 Outlier Detection Pcout - wateRmelon 
This is a wateRmelon package32 outlier detection method wrapped in the function “pcout”. Based 
on robustly sphered data, semi-robust principal components were computed, which are needed for 
determining distances for each observation. Separate weights for location and scatter outliers were 
computed based on these distances. The combined weights were used for outlier identification. 
pcout_NHANES <- outlyx(NHANES_MS)  
pcout_NHANES$Sample_ID <- rownames(pcout_NHANES) 
pcout_NHANES[which(pcout_NHANES$outliers == T),] 

6.3 locFDR Outlier Detector 
Code for outlier detection by12. We used PC analysis to identify and remove outlier samples based on 
the squared distance of its first PC from the population mean. The z-statistic was converted to a false-
discovery rate using the Benjamini-Hochberg procedure36. Samples with FDR <0.2 were designated 
as outliers and removed. This was performed iteratively until no outliers remained.  
meta <- pNHANES(NHANES_MS) 
PCA<-as.data.frame(unclass(princomp(betas(NHANES_MS))$loadings))  
zstat_comp1<-(PCA$Comp.1-mean(PCA$Comp.1))/sd(PCA$Comp.1) 
w <- locfdr(as.matrix(zstat_comp1)) fdr <- 
as.data.frame(w$fdr) rownames(fdr) <- 
rownames(PCA) outmeta<-meta[which(fdr 
<= 0.1),] outmeta$PCA<-"FDR<=0.1" 
inmeta<-meta[which(!(fdr <= 0.1)),] 
inmeta$PCA<-"FDR>=0.1" 
outliers<-as.character(outmeta$Sample_Group)   
meta_out<-rbind(outmeta,inmeta) 
meta_out <- meta_out[order(match(colnames(betas(NHANES_MS)), meta_out$Sample_Group)),] 

6.4 pfilter - WateRmelon 
Code for detecting samples having ≥ 5% of sites with a detection p-value greater than 1x10-16 and 
labeling them as outliers. 
NHANES.pf<-pfilter(NHANES_MS, pnthresh = 1e-16, perc = 5) 

 
6.5 Removing Outlier Samples 

     NHANES_MSR <- NHANES_MS[, sampleNames(NHANES_MS) %in% Outlier] 
     save(NHANES_MSR, file = "~/NHANES_MSR.RData") 

 

7 Probe Filtering 
Probe filtering prior to analysis included removing control probes, probes which do not have a strong signal 
above background, and probes which bind multiple sites within the genome. 

7.1 Investigating SNP Probes 
There are 59 SNP probes utilized to observe sample mismatches and to ensure replicates cluster 
together. 
NHANES_MS.rs <- as.data.frame(getSnpBeta(NHANES_RG_Raw))  
meta <- pData(NHANES_MS) 
CB_Dist <- dist(t(as.matrix(NHANES_MS.rs))) CB_hc 
<- hclust(CB_Dist, 'ave') 
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CB_hc_cluster<-data.frame(cluster=cutree(CB_hc,k =6), 
states=factor(CB_hc$labels,levels=CB_hc$labels[CB_hc$order])) 

      CB_hc_cluster <- join(CB_hc_cluster, meta, by = "Sample_Group") 
      CBB_Dend <- as.dendrogram(CB_hc) 
      CBB_Dend %>% set("labels_cex", 0.2) %>% plot(main = "SNP Dendrogram") 

 

7.2 Removing Poorly Performing Probes 
For values with 3 or more reads the average measurement was taken and a p-value was provided for 
each value. If the detection p-value was above 1x10-16 in 1% of samples or more, that probe was also 
removed. 
source("~/BadProbe_Function.R") 
NHANES_RG_Raw_B <- NHANES_RG_Raw[,sampleNames(NHANES_RG_Raw) %in%  

sampleNames(NHANES_MSR)] 
      Bad_Probe_List <- Bad_Probes(NHANES_RG_Raw_B, samp_percentage = 1) 
      nbadDet <- unlist(Bad_Probe_List$nbadDetP) 
      nbadAvgbeta <-          unlist(Bad_Probe_List$nbadAvgbeta)  
      NHANES_MSR <- NHANES_MSR[!featureNames(NHANES_MSR) %in% c(nbadAvgbeta, nbadDet)] 
      save(NHANES_MSR, file = "~/NHANES_MSR.RData") 
 

7.3 Filtering Polymorphic and Cross-Hybridizing Probes 
7.3.1 Polymorphic Probes 

Probes were removed which contained a SNP either at the CpG site being measured or at the site of 
the single base pair extension which has a minor allele frequency greater than or equal to 1%. 
fdat  <-  fData(NHANES_MSR) 
CpG <- rownames(fdat)[which(fdat$CpG_maf >= 0.01)] 
SBE <- rownames(fdat)[which(fdat$SBE_maf >= 0.01)] 
NHANES_MSR <- NHANES_MSR[!featureNames(NHANES_MSR) %in% c(CpG, SBE)] 

7.3.2 Cross-Hybridizing Probes 
XY probes predicted to cross-hybridize to autosomes were removed. Pulling XY probes 
predicted to cross-hybridize to autosomes: 
load("~/EPIC_Annotation_Complete.RData") 
X_bind_Aut <- rownames(EPIC_Annotation_Complete) 
[EPIC_Annotation_Complete$CH_450_Aut == "Yes" & EPIC_Annotation_Complete$CHR == "X"]        
Y_bind_Aut <- rownames(EPIC_Annotation_Complete) 
[EPIC_Annotation_Complete$CH_450_Aut == "Yes" & EPIC_Annotation_Complete$CHR == "Y"] 
NHANES_MSR.xy<- NHANES_MSR.xy[!featureNames(NHANES_MSR.xy) %in% c(X_bind_Aut, Y_bind_Aut)] 
save(NHANES_MSR.xy, file = "~/NHANES_MSR.xy.RData") 

 
Pulling autosomal probes predicted to cross-hybridize to XY chromosome: 
Aut_XY_Binders <- rownames(EPIC_Annotation_Complete) 
[EPIC_Annotation_Complete$CH_450_XY == "Yes"]  
NHANES_MSR<- NHANES_MSR[!featureNames(NHANES_MSR)%in%Aut_XY_Binders] 
save(NHANES_MSR, file = "~/NHANES_MSR.RData") 

 

8 Technical Variation Correction 
Code to determine if there is any association between patterns of DNAm and technical batch. 
table(pData(NHANES_MSR)$Sample_Plate) # X plates 
pData(NHANES_MSR)$Sentrix_Row <- substr(pData(NHANES_MSR)$Sentrix_Position,1,3) 
table(pData(NHANES_MSR)$Sentrix_Position) # X rows. unique(pData(NHANES_MSR)$Sentrix_ID) 
table(pData(NHANES_MSR)$Sentrix_ID) # X chips 
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8.1 PCA Investigation 
Code to run PCA to determine whether major variability in the data is related to technical batches. 
meta <- pData(NHANES_MSR)  
meta_categorical <- meta[, c(2,5,7,9)] meta_continuous 
<- meta[, c(11,15)] 
colnames(meta_categorical) <- c("Plate", "Chip", "Row", "Sex") 
colnames(meta_continuous) <- c("BMI", "Age") 
ord <- c(seq(1:sum(ncol(meta_categorical), ncol(meta_continuous)))) 
source("~/PCA_Plot_Function.R") PCA_full<-prcomp(betas(NHANES_MSR)) 
PCA_Plot(PCA_full, nPCs = 30, type = "All", label.y_size = 18, label.x_size = 12) 

 

8.2 Plate Correction 
                 ComBat35 corrects for batch effects in microarrays for studies with smaller batch sizes (<25). 

NHANESNC1 <- NHANES_MSR 
NHANESNC1_M <- exprs(NHANESNC1) 
mval.combat1 <- ComBat(NHANESNC1_M, NHANESNC1$Sample_Plate) 
betas(NHANESNC1) <- m2beta(mval.combat1) 
save(NHANESNC1, file = "~/NHANESNC1.RData") 

 

8.3 Chip Row Correction 
Repeating for removing variation attributed to the row on the chip the sample was placed. 
NHANESNC2 <- NHANESNC1 NHANESNC2_M 
<- exprs(NHANESNC2) 
mval.combat2<- ComBat(NHANESNC2_M, NHANESNC2$Sentrix_Row) 
betas(NHANESNC2)<- m2beta(mval.combat2)  
save(NHANESNC2, file = "~/NHANESNC2.RData") 

 

8.4 Chip Correction 
Re-running based on which chip the samples were run. 
NHANESNC3 <- NHANESNC2 NHANESNC3_M 
<- exprs(NHANESNC3) 
mval.combat3<- ComBat(NHANESNC3_M, NHANESNC3$Sentrix_ID) 
betas(NHANESNC3)<- m2beta(mval.combat3)  
save(NHANESNC3, file = "~/NHANESNC3.RData") 

 

9 Replicate Removal 
Removing replicate samples. 
rep_out <- c("samp1_rep1")  
NHANESNC <- NHANESNC[, !sampleNames(NHANESNC)%in%rep_out]  
save(NHANESNC, file = "~/NHANESNC.RData") 

 

 

Appendix 2: Code for NHANES 1999-2000 and 2001-2002 DNA 
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methylation array biomarker production 
1 Libraries 

library("minfi")  
library("BiocGenerics")  
library("Biobase")  
library("scales")  
library("reshape2")  
library("crayon")  
library("withr")  
library("ggplot2")  
library("matrixStats") 
library("FDb.InfiniumMethylation.hg19") 
library("foreach")  
library("iterators")  
library("locfit")  
library("bumphunter")  
library("methylumi")  
library("gplots")  
library("limma")  
library("marray")  
library("lumi")  
library("wateRmelon")  
library("plyr") 
library("IlluminaHumanMethylationEPICanno.ilm10b2.hg19") 
library("IlluminaHumanMethylationEPICanno.ilm10b4.hg19") 
library("IlluminaHumanMethylationEPICmanifest")  
library("RPMM") 
library("WGCNA")  
library("impute")  
library("FlowSorted.Blood.EPIC")  
library("reticulate")  
library("Metrics")  
library("DunedinPoAm45")  
library("DunedinPoAm38")  
library("vroom") 
 

2 Functions & Future Use Objects 
2.1 Cell Type Reference 

hub <- ExperimentHub() 
query(hub, "FlowSorted.Blood.EPIC") 
FlowSorted.Blood.EPIC_ref <- hub[["EH1136"]] 
save(FlowSorted.Blood.EPIC_ref, file ="~/FlowSorted.Blood.EPIC_ref.RData") 

2.2 DNAm Epigenet ics  Biomarker Coefficients 
Code for making a single table containing all epigenetic biomarker coefficients and probe names 
required for prediction. 

Horvath_coef <- read.csv("Horvath_coef.csv")  
horvathCoef <- Horvath_coef[,2]  
names(horvathCoef) <- Horvath_coef[,1] 

hannum_coef_dat <- read.csv("datCoefHannum.csv")  
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hannumCoef <- hannum_coef_dat[,2]  
names(hannumCoef) <- hannum_coef_dat[,1] 

skinbloodCoef_dat <- read.csv("datSkinClock.csv")  
skinbloodCoef <- skinbloodCoef_dat[,2]  
names(skinbloodCoef) <- skinbloodCoef_dat[,1] 

PhenoAgeCoef_dat <- read.csv("datPhenoAge.csv")  
phenoageCoef <- PhenoAgeCoef_dat[,2]  
names(phenoageCoef) <- PhenoAgeCoef_dat[,1] 

load("coefTL.rda")  
telomereCoef <- coefTL[,2] 
names(telomereCoef)  <-  coefTL[,1] 

load("Yang_CpGID.rdata")  
yangCoef <- epiTOCcpgs.v 

load("zhangCoef.RData") 
zhangCoef <- as.data.frame(zhangCoef)  
ZhangCoef <- zhangCoef[,2]  
names(ZhangCoef) <- zhangCoef[,1] 

lin_Coef <- read.csv("linCoef_dat.csv")  
linCoef <- lin_Coef[,2] 
names(linCoef) <- lin_Coef[,1] 

# The following values were obtained from Lin et al. 2016 
weidnerCoef <- c(111.83, -64.57, -42.57, 75.15) 

names(weidnerCoef) <- c("(intercept)", "cg02228185", "cg25809905", "cg17861230") 
vidalbralo_Coef <- read.csv("VidalBraloCoefs.csv")  

vidalbraloCoef <- vidalbralo_Coef[,2]  
names(vidalbraloCoef) <- vidalbralo_Coef[,1] 

Dunedin38Probes <- unlist(DunedinPoAm38::getRequiredProbes()$DunedinPoAm_38)  
save( horvathCoef, hannumCoef, skinbloodCoef, phenoageCoef, telomereCoef, yangCoef, ZhangCoef, 
linCoef, weidnerCoef, vidalbraloCoef, Dunedin38Probes, file = "DNAmAgeCoef.RData") 

 

2.3 DNAm_Biomarker_Probe_Count_NG Function: 
Function to calculate the number of probes missing from all DNAm epigenetic biomarkers except 
GrimAge, GrimAge 2, and their components (the code for these is proprietary). 
DNAm_Biomarker_Probe_Count_NG  <-  function(betas){ 

biomarker <- c('horvath', 'hannum','skinblood', 'phenoage', 'telomere', 'yang', 'zhang', 
'DunedinPoAm38', 'lin', 'weidner', 'vidalbralo') 
probes_in_biomarker  <- c(length(names(horvathCoef))-1,  length(names(hannumCoef)),  

length(names(skinbloodCoef)), length(names(phenoageCoef))-1, 
length(names(telomereCoef))-1, length(yangCoef), length(names(ZhangCoef))-1, 
length(DunedinPoAm38::getRequiredProbes()$DunedinPoAm_38), length(names(linCoef))-1, 
length(names(weidnerCoef))-1, length(names(vidalbraloCoef))-1) 

probes_in_data <- c(length(intersect(rownames(betas),names(horvathCoef))),  
length(intersect(rownames(betas),names(hannumCoef))), 
length(intersect(rownames(betas),names(skinbloodCoef))), 
length(intersect(rownames(betas),names(phenoageCoef))), 
length(intersect(rownames(betas),names(telomereCoef))), 
length(intersect(rownames(betas),yangCoef)), 
length(intersect(rownames(betas),names(ZhangCoef))), 
length(intersect(rownames(betas), 
unlist(DunedinPoAm38::getRequiredProbes()$DunedinPoAm_38))), 
length(intersect(rownames(betas),names(linCoef))), 
length(intersect(rownames(betas),names(weidnerCoef))), 
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length(intersect(rownames(betas),names(vidalbraloCoef)))) 
probe_df <- data.frame(biomarker, probes_in_biomarker, probes_in_data) 
probe_df$Percentage_Coverage  <- round((probe_df$probes_in_data/probe_df$probes_in_biomarker)*100,2) 
return(probe_df)} 

 
2.4 agep_NG Function: 

Function to calculate DNAm epigenetics biomarkers except proprietary GrimAge, GrimAge2, 
and their components. 
trafo <- function(x,adult.age=20) { x=(x+1)/(1+adult.age); y=ifelse(x<=1, log( x),x-1);y}  
 anti.trafo <- function(x,adult.age=20) { ifelse(x<0, (1+adult.age)*exp(x)-1, 

(1+adult.age)*x+adult.age) } 
agep_NG <- function(betas, coeff = NULL, method = c('horvath', 'hannum','skinblood', 

'phenoage', 'telomere', 'yang', 'zhang', 'lin', 'weidner', 'vidalbralo'),…){ 
if(method == 'horvath'){ 

ages <- as.matrix(apply(betas,2,function(x){ 
miss <- names(coeff)[-1]%in%names(na.omit(x))  
coef2 <- coeff[-1][miss] 
data <- x[names(coef2)] 
pre <- data %*% coef2 + coeff[1] 
anti.trafo(pre,  adult.age=20)}))} 

if(method == 'hannum'){ 
ages <- as.matrix(apply(betas,2,function(x){  
miss <- names(coeff)%in%names(na.omit(x))  
coef2 <- coeff[miss] 

data <- x[names(coef2)] 
data %*% coef2 + 0}))} 

if(method=='skinblood'){ 
ages <- as.matrix(apply(betas,2,function(x){ 
miss <- names(coeff)%in%names(na.omit(x)) coef2 
<- coeff[miss] 
data <- x[names(coef2)] 
pre <- data %*% coef2 + coeff[1] 
anti.trafo(pre,  adult.age=20)}))} 

if(method == 'phenoage'){ 
ages <- as.matrix(apply(betas,2,function(x){  
miss <- names(coeff)[-1]%in%names(na.omit(x)) 
coef2 <- coeff[-1][miss] 
data <- x[names(coef2)]  
data %*% coef2 + coeff[1]}))} 

if(method == 'telomere'){ 
ages <- as.matrix(apply(betas,2,function(x){  
miss <- names(coeff)[-1]%in%names(na.omit(x)) 
coef2 <- coeff[-1][miss] 
data <- x[names(coef2)] 
data <- x[names(coef2)] 
data %*% coef2 + coeff[1]}))} 

if(method == 'yang'){ 
common.v <- intersect(rownames(betas),coeff)  
map.idx <- match(common.v,rownames(betas)) 
ages <- colMeans(betas[map.idx,])} 

if(method == 'zhang'){ 
ages <- as.matrix(apply(betas,2,function(x){  
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miss <- names(coeff)[-1]%in%names(na.omit(x))  
coef2 <- coeff[-1][miss] 
data <- x[names(coef2)] 
data %*% coef2 + coeff[1]}))} 

if(method == 'lin'){ 
ages <- as.matrix(apply(betas,2,function(x){ miss 
<- names(coeff)[-1]%in%names(na.omit(x)) coef2 <- 
coeff[-1][miss] 
data <- x[names(coef2)]  
data %*% coef2 + coeff[1]}))} 

if(method == 'weidner'){ 
ages <- as.matrix(apply(betas,2,function(x){ miss 
<- names(coeff)[-1]%in%names(na.omit(x)) coef2 <- 
coeff[-1][miss] 
data <- x[names(coef2)] data %*% coef2 + coeff[1]}))} 

if(method == 'vidalbralo'){ 
ages <- as.matrix(apply(betas,2,function(x){ miss 
<- names(coeff)[-1]%in%names(na.omit(x)) coef2 <- 
coeff[-1][miss] 
data <- x[names(coef2)] data %*% coef2 + coeff[1]}))} 

return(ages)} 
 

3 Creating Methylation Objects 
Code to read in iDats were to create an RGChannelSet Extended object to use for pre-processing and 
normalization. 
sampleInfo <- read.csv("NHANES_Samplesheet.csv", header = T, row.names = 1, skip = 7) 
sampleInfo$Basename <- paste(sampleInfo$Sentrix_ID, sampleInfo$Sentrix_Position, sep="_") 
sampleInfo$Chip_Position <- sampleInfo$Basename 
sampleInfo$Basename <- file.path("iDats", sampleInfo$Basename) 
NHANES_RG_Raw <- read.metharray(basenames = sampleInfo$Basename, extended = T) 
identical(sampleNames(NHANES_RG_Raw), sampleInfo$Chip_Position) 
sampleNames(NHANES_RG_Raw) <- sampleInfo$Sample_Group identical(rownames(sampleInfo), 
sampleNames(NHANES_RG_Raw)) save(NHANES_RG_Raw, file = "NHANES_RG_Raw.RData") 
 

4 Outlier Detection & Removal 
4.1 Quality Control Check 

Code to analyze the control probes to see how the array performed and to see if there were any 
outlier samples present. 

 
MSet.raw <- preprocessRaw(NHANES_RG_Raw) qc.raw <- 
getQC(MSet.raw) 
MSet.raw.QC <- addQC(MSet.raw, qc.raw) plotQC(qc.raw, 
badSampleCutoff = 10.5) NHANES_qcraw <- 
as.data.frame(qc.raw@listData) NHANES_qcraw$Sample_ID <- 
qc.raw@rownames 
NHANES_qcraw$Threshold <- (NHANES_qcraw$mMed + NHANES_qcraw$uMed)/2 outliers 
<- NHANES_qcraw$Sample_ID[NHANES_qcraw$Threshold <= 10.5] 
save(MSet.raw, file = "MSet.raw.RData") 
save(NHANES_qcraw, file = "NHANES_qcraw.RData") 

 

4.2 Removing Outliers 
NHANES_RG_OR <- NHANES_RG_Raw[,!sampleNames(NHANES_RG_Raw) %in% outliers] 
save(NHANES_RG_OR, file = "NHANES_RG_OR.RData") 
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5 Background Subtraction & Color Correction 
Function from the minfi package used to remove background signal and control for dye bias of the array. 
 
NHANES_RG_BC <- preprocessNoob(NHANES_RG_OR) save(NHANES_RG_BC, 
file = "NHANES_RG_BC.RData") 
 

6 General Imputation and Normalization 
Code used for a subset of the epigenetic biomarkers (Lin, Weidner, Vidal-Bralo, Yang, Zhang, 
DunedinPoAm) that used beta-mixture quantile normalization (BMIQ). 
NHANES_RG_BC_BMIQ <- BMIQ(NHANES_RG_BC, nfit = 100000) # This produces just a matrix 
save(NHANES_RG_BC_BMIQ, file = "NHANES_RG_BC_BMIQ.RData") 

 

7 Horvath Imputation and Normalization 
Imputation and normalization of Horvath, Hannum, SkinBlood, GrimAge, GrimAge2, and PhenoAge. 

7.1 Data Preparation 
dat <- as.data.frame(getBeta(NHANES_RG_BC)) input= 
cbind(rownames(dat), dat) 
colnames(input)[1]="ProbeID" 
ann=read.csv("datMiniAnnotation3.csv") 
check=is.element(ann$Name,input$ProbeID)  
miss.cpg=ann$Name[!check] 
input.subject=colnames(input)[-1] 
nsubject=dim(input)[2]-1 
nmiss.cpg=length(miss.cpg) 
add=data.frame(matrix(data=NA,nrow=nmiss.cpg,ncol=dim(input)[2]))   
add[1:5,1:5] 
names(add)=names(input) add[,1]=miss.cpg 
betas_horvath_new=rbind(input,add) 
betas_horvath_new=betas_horvath_new[betas_horvath_new$ProbeID %in% ann$Name,] 

7.2 Imputation and Normalization 

source("Horvath_Norm.R")  
gold=read.csv("datMiniAnnotation3_Gold.csv")  
datMethUsed= t(betas_horvath_new[,-1]) colnames(datMethUsed)=as.character(betas_horvath_new[,1])   
input.na=apply(is.na(datMethUsed),2,sum) 
input.na=data.frame(var=names(input.na),nmiss=input.na)  
input.na=subset(input.na,nmiss>0) 
var.miss=input.na$var  
ck=is.element(var.miss,gold$CpG) 
table(ck) 
datMethUsedGI = datMethUsed 
for(k in 1:length(var.miss)){  
gold0=subset(gold,CpG==var.miss[k])  
index=is.na(datMethUsedGI[,var.miss[k]])  
datMethUsedGI[index,var.miss[k]]=gold0$gold} 
temp=apply(is.na(datMethUsedGI),2,sum) 
summary(temp) betas_horvath_N=BMIQcalibration(datM=datMethUsedGI,goldstandard.beta=gold$gold) 
NHANES_Beta_Horvath <- as.data.frame(betas_horvath_N) 
save(NHANES_Beta_Horvath, file = "NHANES_Beta_Horvath.RData") 

http://bioconductor.org/packages/release/bioc/vignettes/minfi/inst/doc/minfi.html
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8 Epigenetic Age Prediction 

8.1 DNAm Epigenetic Biomarker Missing Probes 
Code for calculation of missing probes (except for GrimAge, GrimAge2, and their components). 
betas <- getBeta(NHANES_RG_BC) 
NHANES_Biomarker_Probe_Count <- DNAm_Biomarker_Probe_Count_NG(betas) 
write.csv(NHANES_Biomarker_Probe_Count, file = "NHANES_Biomarker_Probe_Count.csv") 
save(NHANES_Biomarker_Probe_Count, file = "NHANES_Biomarker_Probe_Count.RData") 

 
8.2 DNAm Biomarker Calculation 

betasH <- NHANES_Beta_Horvath  
betasBMIQ <- NHANES_RG_BC_BMIQ 
NHANES_DNAm_Meta <- as.data.frame(agep_NG(betasH, method = "horvath", coeff=horvathCoef)) 
colnames(NHANES_DNAm_Meta)[1] <- "Horvath" 
NHANES_DNAm_Meta$Hannum <- agep_NG(betasH, method = "hannum", coeff = hannumCoef) 
NHANES_DNAm_Meta$SkinBlood <- agep_NG(betasH, method = "skinblood", coeff = skinbloodCoef)  
NHANES_DNAm_Meta$PhenoAge <- agep_NG(betasH, method = "phenoage", coeff = phenoageCoef) 
NHANES_DNAm_Meta$DNAmTL <- agep_NG(betasBMIQ, method = "telomere", coeff = telomereCoef) 
NHANES_DNAm_Meta$Yang <- agep_NG(betasBMIQ, method = "yang", coeff = yangCoef) 
NHANES_DNAm_Meta$Zhang <- agep_NG(betasBMIQ, method = "zhang", coeff = ZhangCoef) 
NHANES_DNAm_Meta$Lin <- agep_NG(betasBMIQ, method = "lin", coeff = linCoef) 
NHANES_DNAm_Meta$Weidner <- agep_NG(betasBMIQ, method = "weidner", coeff = weidnerCoef) 
NHANES_DNAm_Meta$VidalBralo <- agep_NG(betasBMIQ, method="vidalbralo", coeff=vidalbraloCoef)  
DunedinPoAm <- as.data.frame(DunedinPoAm38::PoAmProjector(betasBMIQ)) 
NHANES_DNAm_Meta$DunedinPoAm <- DunedinPoAm$DunedinPoAm_38 
NHANES_DNAm_Meta$SP_ID <- rownames(NHANES_DNAm_Meta)  
save(NHANES_DNAm_Meta, file = "NHANES_DNAm_Meta.RData") 

8.3 GrimAge, GrimAge2, and Components 
This code is proprietary so cannot be shared. We received permission from the authors to use the code 
for calculation of GrimAge. GrimAge2, and their components for this instance only. Code was 
deleted after the calculation was performed. 

 

9 Cell Type Prediction 
Cell type prediction (CD8+ T-cells, CD4+ T-cells, natural killer cells, B-cells, monocytes, neutrophils) 
was done using the EPIC blood reference dataset and the IDOL probes27.  

data("IDOLOptimizedCpGs") load("Data/FlowSorted.Blood.EPIC_ref.RData") 
NHANES_CTPs <- estimateCellCounts2(NHANES_RG_Raw, compositeCellType = "Blood", probeSelect = 

"IDOL", referencePlatform = "IlluminaHumanMethylationEPIC", 
IDOLOptimizedCpGs=IDOLOptimizedCpGs, referenceset="FlowSorted.Blood.EPIC_ref") 

NHANES_CTPs <- as.data.frame(NHANES_CTPs$counts) 
NHANES_CTPs$SP_ID <- rownames(NHANES_CTPs) 
NHANES_DNAm_Meta <- join(NHANES_DNAm_Meta, NHANES_CTPs, by = "SP_ID") 
save(NHANES_DNAm_Meta, file="NHANES_DNAm_Meta.RData") 

 

10 Sample Mismatch Analysis 
10.1 Epigenetic Age Deviation 

Identifying samples where chronological age was more than 2 standard deviations away from 
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predicted age using five epigenetic predictors. 
NHANES_DNAm$clock_deviated_2sd <- 0 
for (clock in c("Hannum","BloodSkin","Zhang","DNAmTIMP1","GrimAge")){ 
NHANES_DNAm$temp <- NHANES_DNAm[,clock] - NHANES_DNAm$RIDAGEYR 
NHANES_DNAm$deviated_2sd[abs(NHANES_DNAm$temp - mean(NHANES_DNAm$temp,na.rm=T))> 
    sd(NHANES_DNAm$temp,na.rm=T)*2 & !is.na(NHANES_DNAm$temp)] <-       
NHANES_DNAm$deviated_2sd +1} 

10.2 Cell Count Comparison 
Identifying samples where cell counts were more than 2 standard deviations away from predicted cell 
proportions. 
NHANES_DNAm$celltype_mo <- NHANES_DNAm$LBXMOPCT - NHANES_DNAm$Mono*100 
NHANES_DNAm$celltype_ne <- NHANES_DNAm$LBXNEPCT - 
NHANES_DNAm$Neu*100NHANES_DNAm$celltype_deviated_2sd <- 0 
NHANES_DNAm$celltype_deviated_2sd[abs(NHANES_DNAm$celltype_mo) 

>sd(NHANES_DNAm$celltype_mo,na.rm=T)*2 & 
                           !is.na(NHANES_DNAm$celltype_mo)] <- NHANES_DNAm$celltype_deviated_2sd +1 
NHANES_DNAm$celltype_deviated_2sd[abs(NHANES_DNAm$celltype_ne) 

>sd(NHANES_DNAm$celltype_ne,na.rm=T)*2 & 
                           !is.na(NHANES_DNAm$celltype_ne)] <- NHANES_DNAm$celltype_deviated_2sd +1 

10.3 XY Chromosome Comparison 
Identifying any samples which don’t have the expected chromosomal ploidy. 
NHANES_DNAm$XY_Estimation <- getSex(NHANES_MS) 
NHANES_DNAm$mismatch <- abs(NHANES_DNAm$XY_Estimation-NHANES_DNAm$RIAGENDR) 

10.4 Sample Mismatch Assessment 
Identifying any samples mismatched on two or more of the three criteria. 
table(paste0(NHANES_DNAm$clock_deviated_2sd, 
NHANES_DNAm$celltype_deviated_2sd,NHANES_DNAm$mismatch)) 

 

 
  

http://is.na/
http://is.na/
http://is.na/
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